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RDMA-based Storage System

* RDMA catalyzes in-memory storage systems
* File systems, key-value stores, transactional databases, ...
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RDMA-attached Memory

* Server
* Expose virtual memory via RDMA MR (RDMA-attached Memory)

* RNIC accesses the virtual memory via DMA, bypassing the CPU
* Pin pages in the physical memory; build the RNIC page table

* Client
* Access the MR by one-sided RDMA READ/WRITE
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ODP MR

* On-demand Paging MR
* Hardware solution by Mellanox [ASPLOS’17]

e mmap an SSD and register as an ODP MR
* The client submits normal RDMA READ/WRITE
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ODP MR

* Not all pages are mapped

* Trigger an RNIC page fault when accessing an invalid virtual page
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ODP MR

* Synchronizing between CPU and RNIC page tables
* Three flows: faulting, invalidation, advising
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ODP MR is not the silver bullet

* Read 4KB performance
* 64GB virtual memory, 32GB physical memory
* mmap() Intel Optane P5800X SSD
* (a) 1 client thread
* (b) 64 client threads

% 300

8 0= 3000F = m
< (b)
5 200 - B - - - B - - onnn k- - B ... B ...
o .

S 100 P
5 | S

- U Al |
= Uniform Skewed Uniform  Skewed

66.64x — 290.76x slowdown! ]




ODP MR is not the silver bullet

* Two sources of overhead
A normal read consumes 4us

* Hardware: stall & resume QP, trigger interrupt, update RNIC page table
e Software: CPU page fault
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1. Onload exception handling from HW to SW.
2. Eliminate CPU page faults from the critical path.
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* CPUVM

* mmap; Serves local access (load/store) from the server-side application.

* TeRM MR

 Serves remote access (memory read/write) from the client-side application.

* tLib-S/tLib-C

 Server-side/client-side shared library; replaces libibverbs usini LD PRELOAD
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TeRM MR

* Magic physical page
* Invalid virtual pages are mapped to this one.
* Filled with magic pattern.
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RDMA READ on invalid virtual pages returns with
magic pattern.
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Read workflow

* RDMA READ first

@ submit an RDMA READ request

@ receive the response

@ check whether the data contains magic pattern

If no magic pattern is found, the read request completes.
Otherwise, ...
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Read workflow

* RPC READ if necessary

(D submit an RPC READ request
(2 tLib-S reads data
(3 tLib-C receives data and completes the read

“principle 1: onload exception handling from HW to SW”
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Write workflow

e RPC WRITE for all

(D submit an RPC WRITE request
(2 tLib-S writes data
(3 tLib-C receives notification and completes the write
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How can RPC access data efficiently?

* Load/store the CPU VM?
* Still triggers CPU page faults!

* Convert memory load/store to file I/O
* Read/write the SSD
* “Principle 2: eliminate CPU page faults from the critical path”
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How can RPC access data efficiently?

* Convert memory load/store to file I/O
e SSD LBA range: [slba, slba + length)

* Virtual address range: [saddr, saddr + length)
* |ba = addr —saddr + slba

One-Sided Access RPC READ/WRITE
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Tiering 1O

* Read/write data via two interfaces
* Check the page cache
» Buffer 10 for cached data, using page cache
 Direct IO for uncached data, bypassing page cache

One-Sided Access RPC READ/WRITE

TeRM MR Bounce Buffer
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Promoting Hotspots

e Client-side
e Count accesses on each unit

e Server-side

* Aggregate counters from all clients CPU Page Table @
* Find most-accessed units as hotspots
* Promote via ibv_advise _mr() OS Kernel

RNIC Driver

RNIC Page Table

3) Advising
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e Testbed

« RDMA Cluster: server machine * 1, client machine * 2
* SSD: Intel Optane P5800X 400GB

* RNIC: ConnectX-5 100Gbps

e Switch: IB 100Gbps

* Settings
 Virtual memory: 64GB, physical memory: 32GB
* 64 Client threads, 16 server threads
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* Comparing Targets
* PIN: ideal upper bound, all pages in the physical memory
 ODP: hardware solution, ODP MR
* RPC: software solution, all requests via RPC, access data via memcpy
* TeRM: our solution.
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Evaluation: Overall Performance

* Read
* vs. ODP: 30.46x — 549.63x
* vs. RPC: 9.05x —45.19x
* vs. PIN: 37.79% —96.71%
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Evaluation: Overall Performance

* Write
e vs. ODP: ~ 1000x (ODP write is very unstable and jitters sharply)
* vs. RPC: 7.73x —12.60x
* vs. PIN: 6.55% —96.32%
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Evaluation: Dynamic Workloads

* Change hotspots at the 60" second
* Performs stably: drops by only 6.82%
* Promoting fast: returns to the peakin 1 second
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Evaluation: RDMA-based storage system

* Octopus: A File System [ATC’17]
 Workloads: read/write the file
e Results: up to 642.23x ODP, 7.68x RPC
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Evaluation: RDMA-based storage system

* XStore: A Key-Value System [OSDI’20]
* Workloads: YCSB-C, read 8B keys and 128B values
e Results: Up to 102.97x ODP, 2.69x RPC
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Conclusion

* TeRM proposes an efficient approach to extending
RDMA-attached memory with SSD.

* TeRM onloads exception handling from hardware to software and
eliminates RNIC & CPU page faults on the critical path.

* TeRM implements a userspace shared library to replace libibverbs and run
unmodified RDMA applications transparently.

* TeRM outperforms the hardware-only ODP MR by up to 642.23%, and the
software-only RPC approach by up to 7.68x.
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Thanks! Q&A
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