ARTIFACT ARTIFA cT ARTIFACT
EVALUATED EVALUATED EVALUATED

REPRODUCED

TeRM: Extending RDMA-Attached
Memory with SSD

, Qing Wang?, Xiaojian Liao?!, Keji Huang?, Jiwu Shu?
Tsinghua University

’Huawei Technologies Co., Ltd

RDMA-based Storage System

* RDMA catalyzes in-memory storage systems
* File systems, key-value stores, transactional databases, ...

Assise [0SDI"20] Pilaf [ATC'13] FaRM [NSDI'14]
Aurogon [FAST’22]

, , Sherman [SIGMOD’22]
Octopus [ATC'17] Cell [ATC"16] TH-DPMS [T05'20]

) Rowan [OSDI’23]
Orion [FAST’19] XStore [0SDY20] FileMR [NSDI’20]
DrTM+H [0SDI'18]
RACE [ATC21] FORD [FAST"22] ROLEX [FAST’23]
FUSEE [FAST’23]

RDMA-attached Memory

* Server
* Expose virtual memory via RDMA MR (RDMA-attached Memory)

* RNIC accesses the virtual memory via DMA, bypassing the CPU
* Pin pages in the physical memory; build the RNIC page table

* Client
* Access the MR by one-sided RDMA READ/WRITE

[PINMR] LRDMAApp |

CPURNlcQP _@RDMAR/W || CICr |iL_tfoverbs
RDMA Aan ‘ i — | VM
ibve ysical

mory

ODP MR

* On-demand Paging MR
* Hardware solution by Mellanox [ASPLOS’17]

e mmap an SSD and register as an ODP MR
* The client submits normal RDMA READ/WRITE

T r—

obp MR |i{L.RDMA App |

..

L RNIC | e@romarw || OO |
[RDMA App || QP — | _vm

;ibver‘bs @@ ;"—a'esponse Physical

@@ Memory

...

ODP MR

* Not all pages are mapped

* Trigger an RNIC page fault when accessing an invalid virtual page

CPU Sy g+ g0 ;
Page Table 0 1 8 valid virtual page
Physical { 1 invalid virtual page
Memory] physical page

..................... ; —» virt-to-phys mapping
page Table vl

ODP MR

* Synchronizing between CPU and RNIC page tables
* Three flows: faulting, invalidation, advising

CPU Page Table @

|10,
0 e (1
ot LT %ﬁ‘ 1:0]

RNIC Driver

RNIC Page Table

1) Faulting 2) Invalidation 3) Advising

ODP MR is not the silver bullet

* Read 4KB performance
* 64GB virtual memory, 32GB physical memory
* mmap() Intel Optane P5800X SSD
* (a) 1 client thread
* (b) 64 client threads

% 300

8 0= 3000F = m
< (b)
5 200 - B - - - B - - onnn k- - B ... B ...
o .

S 100 P
5 | S

- U Al |
= Uniform Skewed Uniform Skewed

66.64x — 290.76x slowdown!]

ODP MR is not the silver bullet

* Two sources of overhead
A normal read consumes 4us

* Hardware: stall & resume QP, trigger interrupt, update RNIC page table
e Software: CPU page fault

CPU Page Table 2 £70.74
 \ h 74us >
RNIC Driver * 127.37us 242.34ps 74.17us 128.86us
m (1a) HW (1b) SW (1) HW | (1d) HW
RNIC Page Table
1A\ Caonltina
} N
1. Onload exception handling from HW to SW.
2. Eliminate CPU page faults from the critical path.
W,

* CPUVM

* mmap; Serves local access (load/store) from the server-side application.

* TeRM MR

 Serves remote access (memory read/write) from the client-side application.

* tLib-S/tLib-C

 Server-side/client-side shared library; replaces libibverbs usini LD PRELOAD
onovaro [WNE U

= |[TeRM MR |{LROMAADD |
| CPU RNIC @ response | o |l thbsD |
| RDOMA App | i QP | iMMm|Tiering 10]
— = @@ | (JRPC READ/WRITE g
tlece — | QP '\ Physical |

; i{ Memory
4—@’ response @ @ .'l-:::::::::::::::::::::::::::::::;

TeRM MR

* Magic physical page
* Invalid virtual pages are mapped to this one.
* Filled with magic pattern.

CPU dissgasssssgss= g -eeees paasaagpeese
Page Table V6 ¢ valid virtual page
Physical i1 invalid virtual page
Memory] normal physical page
O T YT Lol T T TYPPrrs oy . Im] magic physical page
E;T;g Table V? —» virt-to-phys mapping

RDMA READ on invalid virtual pages returns with
magic pattern.

10

Read workflow

* RDMA READ first

@ submit an RDMA READ request

@ receive the response

@ check whether the data contains magic pattern

If no magic pattern is found, the read request completes.
Otherwise, ...

| cient e e TR

= [TeRM MR |;{LROMA App |
'CPU RNIC | “ ®response || ooy [L_tHb-SD
RDMA App | i QP § i {iIMM | Tiering 10|

| (JRPC READ/WRITE |
L tibC® [|- | '\ Physical |
—> | QP 2 y =

; | Memory |
4’@’ response @ @ r'-:::::::::::::::::::::::::::::::E"

| o 99 11

Read workflow

* RPC READ if necessary

(D submit an RPC READ request
(2 tLib-S reads data
(3 tLib-C receives data and completes the read

“principle 1: onload exception handling from HW to SW”

B ooy (RNC U

= [TeRM MR |;{LROMA App |
'CPU RNIC | “ ®response || ooy [L_tHb-SD
[RDMA App | QP ; i :VM|Tiering 10}

. | (JRPC READ/WRITE |
| tbC® |} | | '\ Physical |
— | QP | y a

; i{ Memory |
4’@’ response @ @ r'-:::::::::::::::::::::::::::::::E"

T N >

Write workflow

e RPC WRITE for all

(D submit an RPC WRITE request
(2 tLib-S writes data
(3 tLib-C receives notification and completes the write

B ooy (RNC U

= [TeRM MR |;{LROMA App |
'CPU RNIC | “ ®response || ooy [L_tHb-SD
[RDMA App | QP ; i :VM|Tiering 10}

. | (JRPC READ/WRITE |
| tbC® |} | | '\ Physical |
— | QP | y a

; i{ Memory |
4’@’ response @ @ r'-:::::::::::::::::::::::::::::::E"

—— 1. 13

How can RPC access data efficiently?

* Load/store the CPU VM?
* Still triggers CPU page faults!

* Convert memory load/store to file I/O
* Read/write the SSD
* “Principle 2: eliminate CPU page faults from the critical path”

= |[TeRM MR |{iLRCMAApD |
'cPU RNIC | “®response [| prrpry [HL_tibSO |
RDMA A QP VM Tiering 10|
=R G || IRPCREAD/WRITE |
Lube® il & | — I ap_ || Physical
; i Memory |
4’@7 response @@ ;—:::::::::::::::::::::::::::::::E"
i ssD |

e e eem e m e nm e nmennned e 14

How can RPC access data efficiently?

* Convert memory load/store to file I/O
e SSD LBA range: [slba, slba + length)

* Virtual address range: [saddr, saddr + length)
* |ba = addr —saddr + slba

One-Sided Access RPC READ/WRITE

TeRM MR Bounce Buffer

mmapI

Virtual Memory
g buffer IO
Physical Memory o
3 o
SSD direct IO

15

Tiering 1O

* Read/write data via two interfaces
* Check the page cache
» Buffer 10 for cached data, using page cache
 Direct IO for uncached data, bypassing page cache

One-Sided Access RPC READ/WRITE

TeRM MR Bounce Buffer

mmapI

Virtual Memory
i buffer IO
Physical Memory o
3 o
SSD direct IO

16

Promoting Hotspots

e Client-side
e Count accesses on each unit

e Server-side

* Aggregate counters from all clients CPU Page Table @
* Find most-accessed units as hotspots
* Promote via ibv_advise _mr() OS Kernel

RNIC Driver

RNIC Page Table

3) Advising

17

e Testbed

« RDMA Cluster: server machine * 1, client machine * 2
* SSD: Intel Optane P5800X 400GB

* RNIC: ConnectX-5 100Gbps

e Switch: IB 100Gbps

* Settings
 Virtual memory: 64GB, physical memory: 32GB
* 64 Client threads, 16 server threads

18

* Comparing Targets
* PIN: ideal upper bound, all pages in the physical memory
 ODP: hardware solution, ODP MR
* RPC: software solution, all requests via RPC, access data via memcpy
* TeRM: our solution.

19

Evaluation: Overall Performance

* Read
* vs. ODP: 30.46x — 549.63x
* vs. RPC: 9.05x —45.19x
* vs. PIN: 37.79% —96.71%

@ PIN () oDP (J RPC @ TeRM

-
(@
s

—le

Throughput (Kops/s)
o

64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB
Read Size

20

Evaluation: Overall Performance

* Write
e vs. ODP: ~ 1000x (ODP write is very unstable and jitters sharply)
* vs. RPC: 7.73x —12.60x
* vs. PIN: 6.55% —96.32%

@ PIN

—_
()
P

—t
|

Throughput (Kops/s)
o

64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB
Write Size

21

Evaluation: Dynamic Workloads

* Change hotspots at the 60" second
* Performs stably: drops by only 6.82%
* Promoting fast: returns to the peakin 1 second

) — PIN — ODP RPC — TeRM

a3 7
o | :
= 1 :
2 [:
: | . .
o l :
-CCJ) 1 i
S5 f I _
O ol= | | | — L I —
= 0 20 40 60 80 100 120

22

Evaluation: RDMA-based storage system

* Octopus: A File System [ATC’17]
 Workloads: read/write the file
e Results: up to 642.23x ODP, 7.68x RPC

@PIN (JobP (JRPC @ TeRM

—
o

Bandwidth (GB/s)

o (6)]

Read 4KB Read 16KB Write 4KB Write 16KB

23

Evaluation: RDMA-based storage system

* XStore: A Key-Value System [OSDI’20]
* Workloads: YCSB-C, read 8B keys and 128B values
e Results: Up to 102.97x ODP, 2.69x RPC

— —h
o o
w £
|||||I ™ lIlIIlI

—e
o
[\
||||| L

—
O—l

Throughput (Kops/s)

24

Conclusion

* TeRM proposes an efficient approach to extending
RDMA-attached memory with SSD.

* TeRM onloads exception handling from hardware to software and
eliminates RNIC & CPU page faults on the critical path.

* TeRM implements a userspace shared library to replace libibverbs and run
unmodified RDMA applications transparently.

* TeRM outperforms the hardware-only ODP MR by up to 642.23%, and the
software-only RPC approach by up to 7.68x.

25

Thanks! Q&A

ARTIFACT ARTIFA cT ARTIFACT
EVALUATED EVALUATED EVALUATED

REPRODUCED

TeRM: Extending RDMA-Attached
Memory with SSD

, Qing Wang, Xiaojian Liao, Keji Huang, Jiwu Shu

O https://github.com/thustorage/TeRM

https://github.com/thustorage/TeRM

